При производстве яблочного сока образуются отходы яблочные выжимки

Всем привет, с Вами как всегда Ольга, возможно Вам будет необходима информация для хранения продуктов и различных вещей и расскажу Вам о Способы переработать большой урожай яблок. Может быть какие-то детали могут отличаться, как это было именно с Вами. Внимание, всегда читайте инструкции тех вещей, что покупаете для уборки в доме или химии, которая помогает их хранить. Отвечаю на самые простые вопросы. Пишите свои вопросы/пожелания и секреты в комменты, совместными усилиями улучшим и дополним качество предоставляемого материала.

Другие блюда с использованием яблок

Желе из яблочных остатков и раствор пектина

Желе из яблочных очистков — настоящий деликатес. Можно консервировать.

Варенье

Кальвадос

Используете ли Вы просроченные продукты для приготовления еды в домашних условиях?
Да, главное обработать если это мясные или просроченный кефир на блины.
27.48%
Нет, это очень опасно и не полезно.
35.12%
Если продукты имеют грибок или плесень, то выкидываем, если просрочка пару дней используем в пищу, можно и без термической или иной обработки.
37.4%
Проголосовало: 4636

Яблоки входят в состав многих соусов.

В консервной промышленности одновременно решаются проблемы увеличения объемов производства и рационального использования сырья, материалов, снижения их потерь.

Считается, что работы по комплексному и рациональному использованию сырья должны проводиться но следующим направлениям: первое — создание такой технологии переработки сырья чтобы максимально сократить, а в некоторых случаях практически исключить образование отходов. Это важно потому, что в калькуляции себестоимости наибольшая статья расходов (до 80%) приходится на сырье; второе — организация переработки неизбежно образующихся отходов с получением из них продуктов питания и технических продуктов.

Отходами, остающимися после переработки, являются отдельные экземпляры некондиционных овощей и плодов, которые можно разделить на две группы: сырье, которое по своему внешнему виду, форме, размерам, зрелости не подходит для производства данного вида консервов, и сырье, полностью непригодное в пищу. Дополнительными ресурсами сырья может быть первая группа отходов. Это кабачки диаметром более 70 мм, огурцы диаметром более 50 мм и неправильной формы (кубарики, крючкообразные), капуста с зелеными несвернувшимися листьями.

Переход сельского хозяйства на механизированные способы уборки вызывает необходимость одноразовой сплошной уборки урожая, что приводит к увеличению нестандартной части убранного урожая. Она может достигать 15%.

Наиболее рациональный путь использования такого сырья — это переработка его после соответствующей подработки на продукты, технология производства которых гарантирует получение микробиологически безопасных консервов. Это сушеные овощи и плоды, квашения и соления.

Отходы переработки плодов и овощей можно использовать для получения красителей на базе каротинов, антоцианов, хлорофилла. Методы основываются на экстрагировании и последующей дистилляции. Разработаны технологии получения красителя из свеклы. Из томатных отходов получают ликопиновый краситель.

Использование томатных отходов

Из всего количества овощей, направляемого на переработку, большую часть составляют томаты. Их отходы богаты ценными питательными веществами. Так, свежие выжимки содержат около 32% белка, 30% углеводов.

Пути использования отходов томатного производства сводятся к получению из них корма для птицы и скота, выделению томатных семян, сушке и передаче их для получения масла.

Использование отходов в виде корма требует быстрого вывоза свежих отходов, так как они подвергаются порче из-за наличия гнилостных микробов и плесени.

Подготовка семян к сушке для последующей передачи на малоэкстракционные заводы требует отделения семян от кожицы, мойки их, отделения дефектных семян. Эти процессы требуют больших расходов воды.

Для сушки семян используют агрегаты различных систем: камерные, шахтные, конвейерные, в кипящем слое, барабанные.

Исследования, проведенные институтом ВНИПКИ «Консервпромкомплекс», показали, что целесообразно томатные семена сушить без отделения их от кожицы и остатков пульпы с последующим получением из них кормовой муки. Томатная кормовая мука содержит 13-14% протеина.

Технология выработки томатной кормовой муки состоит в следующем: томатные выжимки дополнительно отжимают на шнековых прессах до влажности 65-70% и подают к сушильному агрегату (АВМ-0,4; АВМ-0,65; СБ-1,5).

Установлены оптимальные параметры сушки томатных отходов: температура сушильного агента не более 200 °С; частота вращения барабана не менее 0,17 с-1; конечная влажность продукта -10%.

Высушенные отходы измельчают на молотковой дробилке и фасуют в бумажные мешки.

Переработка плодовых косточек

При переработке косточковых плодов (вишни, черешни, абрикосов, персиков) основными видами отходов являются косточки.

Из скорлупы косточек получают активированный уголь, а также используют в качестве абразивного материала в пескоструйных аппаратах. Из ядра получают пищевые масла и миндальную пасту. Жмых, остающийся после получения масла, используют для получения горькоминдального масла, кормовой муки и удобрений. Необработанные ядра и жмых непригодны для непосредственного употребления в качестве корма для скота из-за содержания в них амигдалина. Он, распадаясь в организме, выделяет ядовитую синильную кислоту. Особенно богаты амигдалином косточки вишен и абрикосов некоторых сортов.

Технологическая обработка плодовых косточек состоит из следующих процессов (рис. 69).

Рис. 69. Технологическая схема обработки плодовых косточек:
1 — скребковый транспортер; 2 — барабанная моечная машина; 3 — вибросито; 4 — распределительный конвейер; 5 — сушилка; 6 — аспирационая колонна; 7 — бункер; 8 — автоматические весы; 9 — узел фасовки продукции и зашивки мешков; 10 — электропогрузчик.

В барабанных моечных машинах холодной проточной водой удаляются с косточек остатки мякоти и всевозможные примеси. На вибросите удаляются остатки влаги.

В шахтных, ленточных, вихревых или барабанных сушилках косточки сушатся через 8 ч после промывания. Температура сушки 80-120 °С, продолжительность 30-70 мин.

Косточки охлаждаются потоком холодного воздуха до температуры 30-40°С и фасуются в бумажные или льняные мешки. Готовые косточки передаются для дальнейшей переработки на специализированные заводы.

В НРБ разработана технология сушки косточек путем актив¬ной вентиляции. После отделения косточек от мякоти плодов их моют и сушат в течение 20 мин в сушилке с кипящим слоем без подогрева воздуха. Подготовленные таким образом косточки загружают в вертикальные силосы — резервуары, где при активной вентиляции продолжается сушка в течение 2-3 ч. По этому методу можно высушить косточки без затрат топлива (температура воздуха 21-24 °С). В дальнейшем косточки перерабатываются на полуфабрикаты для кондитерской промышленности.

Использование виноградных выжимок

Одним из ценных используемых отходов являются виноградные выжимки.

Отходы производства виноградного сока (гребни, выжимки, отстой) обрабатываются холодной водой в экстракторах. При этом из отходов вымываются растворимые вещества (сахара, органические кислоты). Они используются для получения виннокаменной извести, спирта, уксуса, красителя (из окрашенных сортов винограда), для кормов для скота, масла, таннина, витамина Р. Имеются предложения по использованию обжаренных виноградных косточек после измельчения в качестве добавок к кофейным напиткам.

Использование отходов в качестве корма для животных

Плодовые отходы содержат ценные питательные вещества, и их можно использовать как высококачественный корм. Непосредственное использование отходов в качестве корма имеет свои отрицательные стороны — низкое усвоение, получение их в период года, когда имеется в достаточном количестве зеленый корм, организационные трудности с ритмичным вывозом. Отходзы после протирочных установок, фруктовые выжимки, томатные отходы, зеленые отходы горошка и фасоли, отходы свеклы и моркови поддаются молочнокислому брожению.

Силосование считается одним из самых экономичных способов использования отходов в качестве корма.

В последнее время уделяется большое внимание получению протеина путем ферментации с отдельными культурами дрожжей.

Внедрение той или иной технологии использования отходов консервного производства определяется тем эффектом, который получается на перерабатывающих предприятиях и на предприятиях, которые будут использовать дополнительно полученные продукты в результате комплексной переработки фруктов и овощей.

Комплексная переработка яблок и мандаринов

В общем объеме фруктов, перерабатываемых в нашей стране на консервы, яблоки составляют около 70%.

Основной продукт, который вырабатывается в настоящее время из яблок — сок. При этом образуется большое количество выжимок. Только небольшую их часть (около 20%) направляют на дальнейшую переработку. Из них получают пектин — ценный пищевой студнеобразователь, используемый в кондитерской промышленности. В консервной промышленности пектин используется в производстве джемов, желе.

В процессе комплексной переработки яблок могут быть получены не только сок и пектин, но и многие другие продукты, такие, как этиловый спирт, пищевой порошок из выжимок, яблочный концентрат.

Комплексная переработка яблок может осуществляться по разным технологическим схемам, отличающимся как номенклатурой и выходом готовых продуктов, так и капиталовложениями и другими технико-экономическими показателями.

Основные технологические процессы этих схем следующие: схема 1 — извлечение сока прессованием, сушка выжимок, полу¬чение пектина с извлечением спирта из промывных вод пектинового производства. Получаемые продукты — сок, пектин, спирт; схема 2 — извлечение сока прессованием, экстрагирование сырых выжимок и получение экстракта, сушка выжимок, изготовление пектина. Получаемые продукты — сок, яблочный экстракт (6-6,5% сухих веществ), пектин; схема 3 — извлечение сока с по¬мощью фильтрующих центрифуг, выработка пюре из оставшейся массы; получаемые продукты — сок, пюре; схема 4 — извлечение сока на стекателях, выработка пюре из оставшейся части мезги, его сушка. Получаемые продукты — сок, пюре, порошок.

Технология производства по схеме 1 наиболее распространена в отечественной промышленности переработки плодовых отходов.

Процесс получения пектина из яблочных выжимок складывается из следующих основных операций: купажирования выжимок, их промывания, кислотного гидролиза, экстракции пектина, смешивания и отстаивания, фильтрации, концентрирования экстракта, коагуляции пектина, вакуумной сушки, фасования готового продукта (рис. 70).

Рис. 70. Технологическая схема получения пектина из яблочных выжимок:
1 — дробилка; 2 — транспортер; 3 — экстрактор; 4 — пресс; 5 — резервуар для осахаривания; 6 — насос; 7 — фильтр; 8 — сборник; 9 — вакуум-аппарат; 10 — резервуар для осаждения пектина; 11 — нутч-фильтр; 12 — вакуум-сушилка; 13 — спиртоловушка; 14 — шаровая мельница.

Вторая схема комплексной переработки плодовых выжимок аналогична схеме 1, только промывка выжимок осуществляется сразу после прессования.

Экстрагирование проводится в резервуарах периодического действия. Выжимки из пресса разбавляются промывной водой и перекачиваются в резервуар-экстрактор с мешалкой. Перемешивание осуществляется в течение нескольких минут. В дальнейшем эта масса отпрессовывается.

Выжимки, освобожденные от балластных веществ, сушатся и направляются на пектиновые заводы. Промывные воды сушеных выжимок в пектиновом производстве используются для получения спирта, а экстракт сырых выжимок может быть использован как добавка при изготовлении плодовых напитков.

Для снижения трудозатрат и обеспечения хорошего качества экстрактов разрабатывается схема непрерывного экстрагирования. Одним из условий удовлетворительной работы непрерывнодействующих экстракторов является необходимость четкого разделения смеси на две фазы: жидкую и твердую. При наличии в смеси большого количества слизистых веществ процесс экстракции затруднен. В этом случае необходимо прибегать к применению различных методов, облегчающих сокоотдачу — обработку ферментами, электроплазмолиз и другие приемы.

При создании непрерывнадействующих экстракторов данная схема может иметь лучшие экономические показатели, чем первая.

Рис. 71. Схема комплексной переработки яблок на сок и пюре.

Третья схема, разработанная Всесоюзным научно-исследовательским институтом консервной и овощесушильной промышленности, основана на переработке яблок в фильтрующих центрифугах (рис. 71). В соответствии с этой технологической схемой яблоки элеватором 1 подаются в две последовательно установленные моечные машины (барабанную 2, вентиляторную 3). Вымытое сырье далее поступает на инспекционный транспортер 4, где удаляются непригодные для консервирования плоды и посторонние примеси.

Элеватором 5 доброкачественные плоды транспортируют в фильтрующую центрифугу 6, где их измельчают на терочном диске, насаженном на ротор центрифуги. Одновременно измельченная мезга центробежными силами отбрасывается на фильтрующие лопасти центрифуги. Под действием центробежных сил частицы разделяются на сок и частично обессоченную мезгу. Вспененный сок поступает самотеком из центрифуги в первую приемную емкость 12 и заполняет ее до определенного, автоматически регулируемого уровня. Затем подача сока переключается на вторую приемочную емкость. Сок в емкости оставляется в покое (выдерживается) в течение 20-30 мин. Этого времени достаточно для расслоения сока на пену и прозрачный сок. На дно оседают тяжелые взвеси. После выдерживания сок декантируют через боковой патрубок в промежуточную емкость 11. Из этой емкости сок насосом подается на последующие технологические операции обработки (подогрев, отстаивание, центрифугирование, фильтрацию, фасование).

Читайте также:  Опасность жучков в белой фасоли: как обезопасить другие крупы от заражения?

После освобождения любой из приемных емкостей в нее кратковременно подают пар по вертикальному коллектору, смонтированному внутри емкости. Под действием пара пена разрушается, превращается в пюре и через патрубок в днище вместе с отстоявшимся осадком подается насосом 13 в бункер протирочной машины.

Частично обессоченная мезга, полученная в центрифуге, под действием силы тяжести падает в бункер шпарителя 7, где прошпаривается при температуре 45±2°С острым паром, и далее в протирочную машину 8. В бункере протирочной машины выжим¬ки соединяются с пеной, вытесненной соком из приемной емкости и разрушенной нагреванием. Затем выжимки подаются на вторую протирочную машину. Возможно использование одной сдвоенной протирочной машины.

В результате выжимки разделяются на пюре — плодовую мякоть и отходы — вытерки.

Пюре перекачивают насосом 9 в емкость 10 и используют для получения повидла, сухого порошка, подварок, пюре стерилизованного.

Отходы собирают в емкость и выводят для дальнейшей пере¬работки — сушки и фасования. Они могут быть использованы для получения пектина или кормовой муки.

Выход сока на фильтрующей центрифуге около 40%, пюре на сдвоенной протирке —до 50%. Оставшаяся часть (10%) представляет собой вытерки, состоящие из перегородок семенных гнезд, семян, плодоножек, уплотненных частей мякоти.

Молдавским научно-исследовательским институтом пищевой промышленности разработана схема № 4 по переработке яблок (рис. 72).

Рис. 72. Схема комплексной переработки яблок на сок, пюре и порошок:
1 — моечная машина Т1-КМ-1; 2 — моечная машина КУВ-1; 3 — душевое устройство;4 — транспортер инспекционный; 5 — элеватор типа гусиная шея; 6 — дробилка ВДР-5; 7 — резервуар для неочищенного сока; 8 — стекательВСР-10; 9 — насос; 10 — испаритель шнековый; 11 — аппарат ВНИИКОП; 12 — машина протирочная; 13 — резервуар для пюре; 14 — вальцовая сушилка ВС-1000/2000; 15 — промежуточная емкость; 16 — центрифуга ФВИ-710К-04; 17 — сборник неочищенного сока; 18 — отстойники.

Рис. 73. Технологическая схема комплексной переработки мандаринов:
1 — инспекционный транспортер; 2 — моечная машина; 3 — элеватор типа гусиная шея; 4 — машина для срезания с плодов цедры или кожуры; 5 — диффузор для спиртовых настоев; 6 — просеиватель сахара; 7 — котел для приготовления сиропа; 8 — агрегат для прессования очищенных плодов; 9 — экстрактор выжимок; 10 — купажный чан; 11 — наполнитель; 12 — закаточная машина; 13 — автоклав.

По этой схеме яблоки из бункера поступают в моечную машину Т1-КМ-1, затем в машину КУВ-1 с душевым устройством. Чистые яблоки поступают на инспекционный транспортер, где отбраковываются дефектные плоды и посторонние примеси. Элеватором типа «гусиная шея» яблоки подаются в дробилку ВДР-5, где они измельчаются, а мезга попадает в стекатель BGP-10. Сусло из приемного резервуара подается на линию подготовки сока.

На стекателе отбирается 40% сусла. Остальная масса поступает в шнековый шпаритель, а затем в протирочную машину. Полученный пюреобразный продукт насосом перекачивается в резервуар типа МЗС-420, откуда он подается на сушильную вальцовую установку ВС-1000/2000. Здесь он обезвоживается до 5% остаточной влажности. Кроме того, схема предусматривает подачу яблок после инспекции элеватором на инерционную центрифугу ФВИ-701К, где яблоки измельчаются и под действием центробежной силы от мезги отделяется часть сусла. Сусло подается в отстойники, а затем на выработку сока.

Мезга после центрифуги поступает в шнековый шпаритель, а потом в протирочную машину. Пюреобразный продукт перекачивается насосом в резервуар МЗС-420, откуда частично поступает на сушилку или на производство повидла, соусов.

Было установлено, что с помощью стекателя можно стабильно отбирать 40%, а используя центрифугу — 50% сусла. Однако после удаления взвесей выход сока практически одинаков. Это означает, что увеличивать выход сусла более 40% массы сырья не имеет смысла, так как в противном случае увеличивается массовая доля взвесей. При таком отборе сусла оставшаяся мезга позволяет получить продукт (пюре), который сравнительно легко перекачивается и технологичен при переработке.

Кроме яблок значительных объемов достигает переработка мандаринов, в основном в Грузинской ССР. Увеличивающиеся объемы переработки цитрусовых плодов требуют создания технологии их комплексной обработки. Одним из направлений комплексной обработки является получение спиртовых настоев из кожуры и цедры цитрусовых плодов. Выжимки, остающиеся после получения сока из очищенных плодов, еще содержат значительное количество водорастворимых экстрактивных веществ, так как извлекается только 45-48% общего содержания их в плодовой мякоти.

Всесоюзным научно-исследовательским и проектно-конструкторским институтом по переработке и хранению субтропических плодов разработана технологическая схема для комплексной переработки цитрусовых плодов (рис. 73) на спиртованные настои и соки с сахаром. Линия предусматривает обработку целых плодов, очистку их от кожуры и получение из нее настоев, а также переработку очищенных плодов на соки с сахаром. Диффузионный сок используется в смеси с натуральным для приготовления соков с сахаром. Выход водорастворимых веществ составляет 91-94%.

Доставка сельхозтехники и запасных частей, оросительных систем, насосов во все города России (быстрой почтой и транспортными компаниями), так же через дилерскую сеть: Москва, Владимир, Санкт-Петербург, Саранск, Калуга, Белгород, Брянск, Орел, Курск, Тамбов, Новосибирск, Челябинск, Томск, Омск, Екатеринбург, Ростов-на-Дону, Нижний Новгород, Уфа, Казань, Самара, Пермь, Хабаровск, Волгоград, Иркутск, Красноярск, Новокузнецк, Липецк, Башкирия, Ставрополь, Воронеж, Тюмень, Саратов, Уфа, Татарстан, Оренбург, Краснодар, Кемерово, Тольятти, Рязань, Ижевск, Пенза, Ульяновск, Набережные Челны, Ярославль, Астрахань, Барнаул, Владивосток, Грозный (Чечня), Тула, Крым, Севастополь, Симферополь, в страны СНГ: Киргизия, Казахстан, Узбекистан, Киргизстан, Туркменистан, Ташкент, Азербайджан, Таджикистан.

Наш сайт не является публичной офертой, определяемой положениями Статьи 437 (2) ГК РФ., а носит исключительно информационный характер. Для получения точной информации о наличии и стоимости товара, пожалуйста, обращайтесь по нашим телефонам. В случае копирования, использования любого материала находящегося на сайте www.foodtech.com.ru, активная ссылка обязательна, в случае печати – печатная ссылка. Копирование структуры сайта, идей или элементов дизайна сайта строго запрещено. Технические данные и иллюстрации носят рекламный характер. Указанный комплект поставки и характеристики могут отличаться от входящего в серийную поставку. Производитель оставляет за собой право вносить изменения в конструкцию изделий. Техническое оснащение и комплектацию оборудования просим уточнять у специалистов.

Права на все торговые марки, изображения и материалы, представленные на сайте, принадлежат их владельцам.

Из скорлупы косточек получают активированный уголь, а также используют в качестве абразивного материала в пескоструйных аппаратах. Из ядра получают пищевые масла и миндальную пасту. Жмых, остающийся после получения масла, используют для получения горькоминдального масла, кормовой муки и удобрений. Необработанные ядра и жмых непригодны для непосредственного употребления в качестве корма для скота из-за содержания в них амигдалина. Он, распадаясь в организме, выделяет ядовитую синильную кислоту. Особенно богаты амигдалином косточки вишен и абрикосов некоторых сортов.

Федеральное агентство по рыболовству

Федеральное государственное образовательное учреждение высшего профессионально образования

“Дальневосточный государственный технический рыбохозяйственный университет”

Кафедра ”Технология продуктов питания”

Дисциплина Технология пищевых производств на малых предприятиях

КУРСОВАЯ РАБОТА НА ТЕМУ

Технология производства яблочного сока на малых предприятиях

2. Разработка технологического потока

3. Сырьевая потребность (продуктовый расёт)

5. Компьютерное моделирование

6. Экологизация технологического процесса

Список используемой литературы

В настоящее время в России производится порядка 950 млн. л сока в год (в 1999 году — 500 млн. л). Рост рынка происходит в основном за счет отечественных производителей. Если в 1998 г. импорт составлял 31 % всех потребляемых в России соков, то в 2000 г. — менее 5 %. Средний уровень потребления соков на одного человека в год в России составляет 4 л, в Москве — 21 л. Потребление соков в Центральной части России постепенно будет приближаться к московским показателям, т.к. в этом регионе уже сформировалась культура потребления соков и заботы о своем здоровье (за 2000-2001 гг. соковый рынок данного региона вырос на 40 %). В Сибири и на Дальнем Востоке соки пока воспринимаются только как заменители фруктов с ярко выраженным сезонным потреблением в весенний период, но и данный регион может стать перспективным в будущем. Таким образом, потенциальный рынок соков в России достаточно емкий.

Новые разработки в области технологии консервирования, заморозки и сушки плодоовощной сельскохозяйственной продукции, возрастающий спрос на отечественную продукцию и большой диапазон между потенциальным и фактическим рынком делает эту отрасль пищевой промышленности привлекательной для инвесторов.

Следует особо отметить, что производство консервов является весьма удобной сферой для малого бизнеса. Простая технология, дешевизна (не надо больших капиталовложений, производственных площадей), легкость при организации производства (минимальное количество технологического оборудования), технически несложное производственное оборудование (его изготовление возможно в простейших условиях) позволяет активно участвовать в этом большому количеству представителей малого бизнеса.

1. Разработка технологической линии для производства консервированных стерилизованных продуктов с использованием физических способов обработки сырья

2. Провести продуктовый расчет (определение масс сырья, готовой продукции, отходов и потерь по технологической схеме производства)

3. Подбор и расчёт технологического оборудования

4. Построение компьютерной модели технологических процессов

5. Экологизация технологического процесса

1. Характеристика сырья

Яблочный сок наиболее популярен из всех фруктовых соков. Различают два основных типа соков; без мякоти (прессованные) и с мякотью (гомогенизированные). Сок из яблок преимущественно изготовляют натуральным без мякоти, осветлённым или не осветлённым.

При переработке растительного сырья для качества натуральных соков и нектаров существенное значение имеют не только вид, но и ботанические сорта плодов и овощей, которые разнятся по своим технологическим свойствам. Растительное сырьё должно соответствовать критериям безопасности, установленными Медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов, и не содержать пестицидов.

В зависимости от видов вырабатываемых соков и нектаров рекомендуются те или иные ботанические сорта, по своему химическому составу и технологическим свойствам наиболее подходящие для производства данной продукции.

Для выроботки сока рекомендуются яблоки сортов Антоновка, ренеты, титовка, Белый налив, Пармен зимний золотой, Коричное, Пепин шафранный, Осеннее полосатое, Мекинтош, Суйслепское, Бельфлер, Розмарин белый, Джиграджи, Сары-турш, Кенд-Алма, Ширван-Газеди, Анис полосатый, Кальвиль, Вагнера призовое, Сары-синап. При использовании плодов с повышенной кислотностью (Прибалтика, БССР) к соку добавляют 5% сахара. Практикуют купажирование яблочного сока с другими плодовыми или ягодными соками.

Хранение у всех плодов происходит различными способами. Например, разные сорта яблок неодинаково воспринимают воздействие температуры при хранении. Некоторые из них выносят длительное состояние переохлаждения до минус 2 минус 3 С, при этом хранятся с незначительными потерями и при медленной дефростации (размораживание).

Каждый сорт дикорастущих и культивируемых яблок имеет свои характерные особенности и различный химический состав. Все зависит от происхождения, условий произрастания, степени зрелости плодов. Все это определяет пищевые достоинства, вкус и использование. Химический состав яблок весьма разнообразен и богат.

Исходя из таблицы 1 видно, что химический состав яблок очень разнообразен, содержит большое количество пектина и крахмала. Из-за высокого содержания пектина яблоки являются основным продуктом для производства пектина.

Различают два основных вида пектиновых веществ — протопектин и пектин.

Протопектины не растворимы в воде. Они содержатся в стенках клеток плодов. Протопектин представляет собой соединение пектина с целлюлозой, в связи с чем при расщеплении на составные части протопектин может служить источником пектина.

Пектины относятся к растворимым веществам, усваивающимся в организме. Основным свойством пектиновых веществ, определившим их использование в пищевой промышленности, является способность преобразовываться в водном растворе в присутствии кислоты и сахара в желеобразную коллоидную массу.

Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической (лечебной) целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта. Пектин получают из отходов яблок, арбузов, а также из подсолнечника.

Читайте также:  Хранение филе рыбы при -2

Пектиновые, вещества способны, адсорбировать различные «соединения, в том» числе экзо и эндогенные токсины, тяжелые металлы. Это свойство пектинов широко используется в лечебном и профилактическом питании (проведение разгрузочных яблочных дней у больных колитами, назначение мармелада, обогащенного пектином.

2. Разработка технологического потока

яблочный сок производство

Производство яблочного сока без мякоти состоит из следующих технологических стадий: приемка и подготовка сырья, мойка, инспекция, дробление, термическая обработка, извлечение сока, стерилизация, фасование и хранение.

Технологическая схема производства яблочного сока

Каждый сорт дикорастущих и культивируемых яблок имеет свои характерные особенности и различный химический состав. Все зависит от происхождения, условий произрастания, степени зрелости плодов. Все это определяет пищевые достоинства, вкус и использование. Химический состав яблок весьма разнообразен и богат.

При производстве фруктовых соков и вин ежегодно образуется большое количество яблочной, виноградной и другой выжимки, которая является отходами основного производства. Примерно только 1,5 % общего ее количества используют для экстракции пектина, хотя в ней содержатся и другие ценные вещества (сахароза, глюкоза и фруктоза). В связи с этим важно рационально и своевременно организовать переработку выжимки, так как через 1,5—2 ч она начинает портиться.

Институт технической теплофизики АН УССР и Молдавский научно-исследовательский институт пищевой промышленности разработали технологию и оборудование для переработки яблочной выжимки с получением двух фракций: 70—75 % глюкозно-фруктозного и пектинсодержащего яблочного порошка из мякоти и 25—30 % грубой фракции, состоящей из плодоножек, семенного гнезда и семечек.

Первая фракции порошка рекомендуется для использования в кондитерской промышленности для замены сахара, фруктового пюре и др. Вторая фракция требует дальнейшей переработки.

В отечественной промышленности уже эксплуатируются десятки механизированных линий ЛП-40 по производству яблочного порошка из выжимки. В последующие годы планируется значительно увеличить производство порошка из плодовой выжимки, для чего будут построены цехи производительностью 100 и 300 т в год.

Сырьем для получения яблочного порошка служит сырая яблочная выжимка, полученная при производстве натуральною яблочного сусла из чистых, свежих, здоровых, зрелых яблок.

Яблочная выжимка должна быть свежей, без постороннего запаха, плесени, сорной примеси. Срок хранения ее после отжима сока не должен превышать 2 ч.

Яблочная выжимка после прессов передается ленточным транспортером в дозатор для последующего свободного равномерного распределения ее на металлические поддоны сушилки, движущиеся по транспортеру, или в аппарат К6-ФВЗП-200 для гранулирования. Поддоны с выжимкой загружают на тележки, которые с определенными интервалами вводятся в туннельную сушилку, состоящую из двух или более зон. Для двухзонной паровой сушилки в первой зоне температура теплоносителя 110—140 °С, давление пара в калориферах 0,2—0,6 МПа; во второй зоне температура теплоносителя 70—95 °С, давление пара в калориферах 0,2—0,6 МПа. Скорость движения теплоносителя внутри обеих зон сушилки составляет 2—2,5 м/с.

Начальная влажность выжимки 72—78 %, конечная — не более 8 %, производительность сушилки 47—60 кг/ч по сухой выжимке. Высушенную выжимку вручную выгружают с поддонов в аппарат для измельчения (дезинтегратор «Рекорд» производства ГДР) или в дробилку.

Размер частиц измельченного порошка должен быть не более 1,5 мм. Измельченная выжимка непрерывно поступает на сита рассева марки ЗРШ-1-4, где разделяется на две фракции: порошок с крупностью помола не более 0,4 мм и отходы, состоящие из плодоножек, семечек и семенного гнезда, в виде порошка с крупностью помола более 0,4 мм.

Яблочный порошок фасуют вручную в мешки из термосваривающихся полимерных материалов с последующей герметизацией, термосвариванием и упаковыванием в транспортную тару: фанерные или картонные барабаны или четырехслойные бумажные мешки. Масса нетто не более 20 кг. Яблочный порошок хранят в складских помещениях с температурой от 0 до 20 °С без резких колебаний температуры, с относительной влажностью воздуха не более 75%.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Яблочная выжимка должна быть свежей, без постороннего запаха, плесени, сорной примеси. Срок хранения ее после отжима сока не должен превышать 2 ч.

4. Аппаратное оснащение

Федеральное агентство по рыболовству

Федеральное государственное образовательное учреждение высшего профессионально образования

“Дальневосточный государственный технический рыбохозяйственный университет”

Кафедра ”Технология продуктов питания”

Дисциплина Технология пищевых производств на малых предприятиях

КУРСОВАЯ РАБОТА НА ТЕМУ

Технология производства яблочного сока на малых предприятиях

2. Разработка технологического потока

3. Сырьевая потребность (продуктовый расёт)

5. Компьютерное моделирование

6. Экологизация технологического процесса

Список используемой литературы

В настоящее время в России производится порядка 950 млн. л сока в год (в 1999 году — 500 млн. л). Рост рынка происходит в основном за счет отечественных производителей. Если в 1998 г. импорт составлял 31 % всех потребляемых в России соков, то в 2000 г. — менее 5 %. Средний уровень потребления соков на одного человека в год в России составляет 4 л, в Москве — 21 л. Потребление соков в Центральной части России постепенно будет приближаться к московским показателям, т.к. в этом регионе уже сформировалась культура потребления соков и заботы о своем здоровье (за 2000-2001 гг. соковый рынок данного региона вырос на 40 %). В Сибири и на Дальнем Востоке соки пока воспринимаются только как заменители фруктов с ярко выраженным сезонным потреблением в весенний период, но и данный регион может стать перспективным в будущем. Таким образом, потенциальный рынок соков в России достаточно емкий.

Новые разработки в области технологии консервирования, заморозки и сушки плодоовощной сельскохозяйственной продукции, возрастающий спрос на отечественную продукцию и большой диапазон между потенциальным и фактическим рынком делает эту отрасль пищевой промышленности привлекательной для инвесторов.

Следует особо отметить, что производство консервов является весьма удобной сферой для малого бизнеса. Простая технология, дешевизна (не надо больших капиталовложений, производственных площадей), легкость при организации производства (минимальное количество технологического оборудования), технически несложное производственное оборудование (его изготовление возможно в простейших условиях) позволяет активно участвовать в этом большому количеству представителей малого бизнеса.

1. Разработка технологической линии для производства консервированных стерилизованных продуктов с использованием физических способов обработки сырья

2. Провести продуктовый расчет (определение масс сырья, готовой продукции, отходов и потерь по технологической схеме производства)

3. Подбор и расчёт технологического оборудования

4. Построение компьютерной модели технологических процессов

5. Экологизация технологического процесса

1. Характеристика сырья

Яблочный сок наиболее популярен из всех фруктовых соков. Различают два основных типа соков; без мякоти (прессованные) и с мякотью (гомогенизированные). Сок из яблок преимущественно изготовляют натуральным без мякоти, осветлённым или не осветлённым.

При переработке растительного сырья для качества натуральных соков и нектаров существенное значение имеют не только вид, но и ботанические сорта плодов и овощей, которые разнятся по своим технологическим свойствам. Растительное сырьё должно соответствовать критериям безопасности, установленными Медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов, и не содержать пестицидов.

В зависимости от видов вырабатываемых соков и нектаров рекомендуются те или иные ботанические сорта, по своему химическому составу и технологическим свойствам наиболее подходящие для производства данной продукции.

Для выроботки сока рекомендуются яблоки сортов Антоновка, ренеты, титовка, Белый налив, Пармен зимний золотой, Коричное, Пепин шафранный, Осеннее полосатое, Мекинтош, Суйслепское, Бельфлер, Розмарин белый, Джиграджи, Сары-турш, Кенд-Алма, Ширван-Газеди, Анис полосатый, Кальвиль, Вагнера призовое, Сары-синап. При использовании плодов с повышенной кислотностью (Прибалтика, БССР) к соку добавляют 5% сахара. Практикуют купажирование яблочного сока с другими плодовыми или ягодными соками.

Хранение у всех плодов происходит различными способами. Например, разные сорта яблок неодинаково воспринимают воздействие температуры при хранении. Некоторые из них выносят длительное состояние переохлаждения до минус 2 минус 3 С, при этом хранятся с незначительными потерями и при медленной дефростации (размораживание).

Каждый сорт дикорастущих и культивируемых яблок имеет свои характерные особенности и различный химический состав. Все зависит от происхождения, условий произрастания, степени зрелости плодов. Все это определяет пищевые достоинства, вкус и использование. Химический состав яблок весьма разнообразен и богат.

Глюкоза 2.0
Сахароза 1.5
Гемицеллюлоза 0.4
Клетчатка 1.6
Крахмал 0.8
Пектин 1.0

Исходя из таблицы 1 видно, что химический состав яблок очень разнообразен, содержит большое количество пектина и крахмала. Из-за высокого содержания пектина яблоки являются основным продуктом для производства пектина.

Различают два основных вида пектиновых веществ — протопектин и пектин.

Протопектины не растворимы в воде. Они содержатся в стенках клеток плодов. Протопектин представляет собой соединение пектина с целлюлозой, в связи с чем при расщеплении на составные части протопектин может служить источником пектина.

Пектины относятся к растворимым веществам, усваивающимся в организме. Основным свойством пектиновых веществ, определившим их использование в пищевой промышленности, является способность преобразовываться в водном растворе в присутствии кислоты и сахара в желеобразную коллоидную массу.

Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической (лечебной) целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта. Пектин получают из отходов яблок, арбузов, а также из подсолнечника.

Пектиновые, вещества способны, адсорбировать различные «соединения, в том» числе экзо и эндогенные токсины, тяжелые металлы. Это свойство пектинов широко используется в лечебном и профилактическом питании (проведение разгрузочных яблочных дней у больных колитами, назначение мармелада, обогащенного пектином.

2. Разработка технологического потока

яблочный сок производство

Производство яблочного сока без мякоти состоит из следующих технологических стадий: приемка и подготовка сырья, мойка, инспекция, дробление, термическая обработка, извлечение сока, стерилизация, фасование и хранение.

Технологическая схема производства яблочного сока

Первой операцией является мойка, которую осуществляют в двух последовательно установленных моечных машинах. Мытые плоды инспектируют, удаляя пораженные вредителями и болезнями. После мойки плоды измельчают на дисковых или терочных дробилках: семечковые (яблоки, айву, груши) на частицы размером 2. 6 мм.

Для некоторых плодов и ягод одного дробления недостаточно для получения сока.

Чтобы облегчить выход сока, необходима их дополнительная обработка, которая включает нагревание или обработку электрическим током; ферментные препараты не применяются.

Действию электрического тока в специальных устройствах — электроплазмолизаторах — может подвергаться мезга почти всех плодов и ягод с плотной кожицей.

Обработанную мезгу подают на прессование, для чего применяют гидравлические пакетные прессы периодического действия или непрерывного — шнековые или ленточные.

При производстве яблочного осветленного сока осветляют процеженный сок. Когда готовят соки для детского питания, осветление можно проводить оклеиванием с использованием 1%-ных растворов желатина или танина и желатина.

Осветленный сок фильтруют и направляют на подогрев и фасование.

При изготовлении соков с сахаром или купажированных смешивание соков и добавление сахара осуществляют перед нагреванием.

Сок, фасуемый в мелкую тару с последующей стерилизацией, нагревают до 75. 80 °С и фасуют в подготовленные бутылки или банки. При производстве сока с витамином С в горячий сок добавляют аскорбиновую кислоту, перемешивают 5. 10 мин и сразу передают на фасование.

Наполненную тару укупоривают и направляют на стерилизацию (пастеризацию), которую проводят при 85, 90 или 100 °С в зависимости от кислотности сока и вместимости тары, продолжительность стерилизации от 10 до 20 мин.

В крупную тару вместимостью 2, 3 и 10 дм3 можно фасовать соки так называемым горячим розливом без последующей стерилизации. При горячем розливе сок нагревают до 95. 97 °С с автоматической регулировкой температуры и сразу же разливают в подготовленные горячие банки, которые укупоривают прокипяченными крышками.

Укупоренные банки на 20 мин укладывают на бок для стерилизации верхнего незаполненного пространства тары, после чего обдувают холодным воздухом для снижения вредного воздействия теплоты на качество сока.

Машино-аппаратурная схема комплекса технологического оборудования для производства осветленных фруктовых соков представлена на рис.2.

Читайте также:  Сколько хранится яблочное пюре в холодильнике

Рис.2. Машино-аппаратурная схема комплекса технологического оборудования для производства осветленного яблочного сока

Она состоит из насосов 1, 9, 17 и 24, шнекового отделителя 2, элеваторов 3 и 6, моечной машины 4, инспекционного конвейера 5, сборников 7, 13, 15, 18, 19 и 22, дробилки 8, пресса 10, пастеризатора-охладителя 11, пастеризатора 12, фильтров 14 и 16, охладителя 20, трубчатого статического смесителя 21 и дозатора 23 пектолитических препаратов.

Поступившие на переработку плоды засыпают в бетонные ванны, откуда гидротранспортером по подземным каналам они направляются в цех.

Здесь с помощью шнекового отделителя 2, расположенного в бетонной ванне (яме), плоды отделяют от воды и с помощью элеватора 3 с душевым устройством поднимают к машине для окончательной мойки 4.

Вода, поступающая со шнекового отделителя и содержащая крупные загрязнения (камни, ветки, листья и т. п.), попадает на загрузочную воронку наклонного шнекового конвейера с перфорированным дном, задерживающим и удаляющим загрязнения.

Очищенная вода стекает в ванну (яму), откуда с помощью погружного насоса 1 подается обратно в бетонные ванны с плодами для повторного ее использования.

Промытые плоды инспектируют на конвейере 5, удаляя негодные для переработки плоды, и элеватором 6 поднимают к приемному сборнику 7, ополаскивая плоды струей чистой воды. Яблоки из сборника в необходимом количестве (в зависимости от производительности пресса) подают на дробилку 8. Измельченная плодовая масса немедленно направляется насосом 9 на прессование 10. Полученный сок в установке для прессования очищают от возможных крупных частиц и после пастеризатора-охладителя 11 направляют в одну из емкостей для депектинизации. Выжимки от прессования измельчают на мешалке при возможной добавке воды и направляют в емкости для брожения.

Сок после пастеризации и охлаждения (45. 50 °С) сначала направляют в промежуточный сборник 22, откуда дозировочным насосом 24 он засасывается в емкости для депектинизации. По пути в трубопровод вводят пектолитический препарат при помощи дозатора 23 и перемешивают его в трубчатом статическом смесителе 21. Процессы депектинизации и осветления протекают в зависимости от вида применяемого препарата. Если препарат для осветления требует охлаждения сока, то его после депектинизации через охладитель 20 перекачивают в емкости для осветления 19 и добавляют препарат вручную. Если охлаждения не требуется, сок в этом случае не перекачивают, а препарат для осветления вводят в емкость для депектинизации.

По окончании депектинизации и осветления образовавшийся на дне емкости осадок перекачивают в сборник для приемки осадка 18, откуда его направляют насосом 17 в фильтр 16.

Полученный таким образом сок с помощью насоса перекачивают в сборник 19, куда добавляют сок, полученный от фильтрации осадка. Смесь соков еще раз направляют на фильтр 14 для получения полностью осветленного сока, готового к фасованию в бутылки.

Этот сок собирают в приемном сборнике 13, а потом направляют на линию фасования в бутылки, где он предварительно деаэрируется и пастеризуется.

Фасование сока в бутылки происходит при 80 °С с последующей дополнительной пастеризацией и охлаждением в туннельном пастеризаторе-охладителе.

Техническая характеристика комплекса технологического оборудования для производства осветленного яблочного сока

Производительность по сырью, кг/ч. 3000

Общая установленная мощность оборудования, кВт. 106,85

Численность обслуживающего персонала, чел. 12

3. Сырьевая потребность

Готовый продукт- яблочный сок.

Производительность- 1т / сутки

Режим работы- 12 часов,1 смена, 7 раз в неделю.

Таблица 2. Нормы выхода

Характеристика сырья в % и массе сырья коэффициент расхода сырья на единицу продукции
всего отходов и потерь выход готовой продукции
Яблоки 57,6 40 4,3

Q2 – масса готового продукта, кг;

р – сумма отходов и потерь по технологическим операциям, % к массе исходного сырья.

р1, р2, р3…рn – отходы и потери по технологическим операциям, % к массе сырья или п/ф, поступившего на данную операцию;

n – число технологических операций.

Таблица 3. Выход полуфабриката по технологическим операциям

Подбор и расчет технологического оборудования
(на примере производства яблочного сока)

Необходимое количество оборудования непрерывного действия определяем по формуле

N – производительность на данной операции;

М – часовая производительность машины;

μ – коэффициент использования оборудования (0,8 – 0,9).

Оборудование, используемое на судне непрерывного действия представлено в табл. 20.

Таблица 4 Техническая характеристика и расчет периодически действующего оборудования

Марка Производительность Габариты, мм Потребляемая мощность (кВт/ч)
Моечная машина 150 кг/час 2000х1700х2000 30
Пастеризатор 150 кг/час 1200х1400х1000 30
Дробилка 100 кг/час 1890х1270х1400 16
Фильтр-пресс 100 кг/час 1200х1100х1600 6

Рассчитаем необходимое количество моечных машин;

Рассчитаем необходимое количество пастеризаторов ;

Рассчитаем необходимое количество фильтр-прнссов;

Рассчитаем необходимое количество дробильных установок для крупки;

Таблица 5 Объемная масса материалов

Материал Объемная масса, м3 Необходимое кол-во
Приём. бункер 3 1
Сборники (вместимость 225 кг) 0,3 8
Пастеризатор 2 1
Охладители 1 4

Таблица 6 Расчет и подбор вспомогательного оборудования

Наименование оборудования Назначение Габариты, мм Материал Кол-во
Конвейер испекц. инспекция 1200х700х750 Ламинат серый 1
Стол для укладки Укладка сырья 1200х700х750 Ламинат серый 1
Стол упаковочный Упаковка готовой продукции в коробки 700х500х750 Ламинат серый 1

5. Компьютерное моделирование

Разрабатываемые компьютерные модели ТП могут использоваться в производстве путем применения микропроцессорных систем управления и контроля (МСКУ).

Функционирование МСКУ осуществляется на основе, какой-то модели, отражающей основные физические и химические процессы, протекающие в продукте. На основании модели построен алгоритм и схема управления процессом.

МСКУ обеспечивает выполнение следующих функций:

— определение момента готовности продукта;

— управления органами машины (оборудованием);

— регулирование режимов (одно-, двух- или многоскоростной);

— выдача рекомендаций (или управление) по дозировке рецептурных компонентов, воды и ее температуре).

Система уравнений, связывающих функции отклика с влияющими факторами, называется математическим описанием процесса. Метод полного факторного эксперимента дает возможность получить описание процесса в виде отрезка ряда Тейлора, имеющего вид:

Y = В0 + В1Х1 + В2Х2 + . + Вn Хn + B1.2 Х1Х2 – . – В (n – 1)n Х (n – 1),

Его называют уравнением регрессии, а входящие в него характеристики — коэффициентами регрессии, где Х1, . Хn — независимые переменные величины, влияющие на протекание процесса, называемые факторами (температура, давление, состав реакционной смеси и т.п.): Y — величина, показывающая производительность оборудования, себестоимость продукции и т.п., называемая функцией отклика. Все возможные неповторяющиеся комбинации варьирования факторов позволяет спланировать матрица полного двухфакторного эксперимента (табл. 2.1).

Таблица 2.1. Матрица полного двухфакторного эксперимента

Примечание. Здесь и далее в таблице: «-» — минимальное, «+» — максимальное значение факторов.

На основании полного двухфакторного эксперимента вычисляют коэффициенты регрессии:

Допуская значимость коэффициентов регрессии и адекватность уравнения при доверительной вероятности 0,95 и трех степенях свободы, по величине коэффициентов и их значению определяют ранжирование влияния факторов X1 и Х2 на функцию отклика Y.

Количество опытов полного факторного эксперимента для выбора социально ориентированного технологического решения резко возрастает с увеличением количества факторов. Однако для нахождения коэффициентов регрессии не всегда требуется много опытов. В таких случаях можно уменьшить объем экспериментальных работ, воспользовавшись методом дробных реплик. Этот метод заключается в нахождении математического описания процессов в определенной части полного факторного эксперимента: 1/2, 1/4 и т.д. Такие системы опытов называются дробными репликами.

Тогда матрица полного трехфакторного эксперимента и его дробных реплик будет иметь вид (табл. 2.2).

Таблица 2.2. Матрица полного трехфакторного эксперимента и его дробных реплик

Номер опыта Факторы Функция отклика
Х1 Х2
Номер опыта Факторы Функция отклика Y Дробные реплики
X1 X2 X3
1 -1 -1 -1 Y1 ¼
2 +1 -1 -1 Y2 ½
3 -1 +1 -1 Y3 ¼
4 +1 +1 -1 Y4
5 -1 -1 +1 Y5 ¼
6 +1 -1 +1 Y6 ½
7 -1 +1 +1 Y7
8 +1 +1 +1 Y8 ¼

Расчет коэффициентов регрессии, проверка их значимости и адекватности математического описания в данном случае производятся так же, как и при полном факторном эксперименте, например в виде уравнения регрессии:

Если для вычисления коэффициентов регрессии воспользоваться полным трехфакторным экспериментом, то необходимо провести 8 опытов. Однако эту задачу можно решить и с помощью двухфакторного эксперимента, если в матрице приравнять произведение X1 Х2 к фактору Х3 (табл. 2.3).

Таблица 2.3. Упрощенная матрица

X1 Х2 Х1 Х2 Х3 1 -1 -1 +1 +1 Y1 2 +1 -1 -1 -1 Y2 3 -1 +1 -1 -1 Y3 4 +1 +1 +1 +1 Y4

Коэффициенты регрессии вычисляют по следующим формулам:

B0 = ¼(Y1 + Y2 + Y3 + Y4), B1 = ¼(-Y1 + Y2 – Y3 + Y4),

Коэффициент В3 не может быть определен раздельно, поэтому вычисляем сумму:

тогда искомое уравнение будет иметь вид:

Y = B0 + B1X1 + B2X2 + (B1,2 + B3)X3.

При выборе социально ориентированной технологии переработки сырья с точки зрения экономики и экологии можно быстрее получить результат с помощью ПК.

В процессе выполнения исследований необходимо также вычислить коэффициент корреляции, который рассчитывается по формуле:

где YiВ , YiР — значение первого виртуального (В) и второго реального (Р) показателей;

n — размер элементов в выборке (число корреляционных пар).

При необходимости рассчитывается достоверность коэффициента корреляции. Если по величине абсолютного значения μ степень корреляционной зависимости между показателями менее 0,4 — зависимость слабая; 0,4-0,59 — средняя; 0,6-0,78 — значительная; более 0,8 — высокая.

При моделировании производства функциональной продукции с использованием ПК необходимо виртуально предположить процессы и выявить их закономерности для последующего практического использования этих зависимостей в реальных производственных условиях конкретного производства. Следовательно, необходимо осуществить регулирование технологического процесса с учетом СМС путем их моделирования в виртуальных условиях на основе методов ИР.

6. Экологизация технологического процесса

Проблема окружающей среды и рационального использования природных ресурсов является одной из наиболее актуальных общечеловеческих проблем, так как от ее решения зависит жизнь на земле, здоровье и благосостояние человечества.

Вокруг предприятия предусмотрена санитарно-защитная зона шириной 50 м. Эта зона озеленена и благоустроена. Зеленые насаждения обогащают воздух кислородом, поглощают углекислый газ, шум, очищают воздух от пыли и регулируют микроклимат.

Загрязнение атмосферного воздуха и водоемов находится в пределах допустимых норм, так как с этой целью предусмотрены очистные сооружения.

После промывки оборудования и инвентаря вода, содержащая загрязнения сливается через отверстия в полу, которые связаны с канализацией, сточные воды обрабатываются на очистных сооружениях, а образовавшиеся осадки используются для реализации как удобрения в сельском хозяйстве. Очищенная вода на предприятии используется повторно, но только в бытовых целях.

В курсовой работе была рассмотрена технологическая линия производства яблочного сока на малых предприятиях.

В ходе работы были достигнуты следующие цели:

1. ознакомился с характеристикой сырья, выявил лучшие сорта яблок для наиболее лучшего качества соков. Ознакомился с химическим составом яблок.

2. Разработал конструкторно-технологические схемы производства яблочного сока, создал технологическую схему производства яблочного сока и операторную схему.

3. Произвёл продуктовый расчет, определил массу сырья, готовой продукции, отходов и потерь по технологической схеме производства. Определил производительную мощность линии.

4. Подобрал и рассчитал технологическое оборудование, определил число машин (аппаратов) их размеры и основные конструктивные элементы.

5. Произвёл компьютерное моделирование, ознакомился с методами решения основных уравнений, алгоритмов их реализации и компьютерных программ.

6. Ознакомился с экологизацией технологического процесса, ознакомился с рациональным использованием ресурсов.

Список использованной литературы

1. Общая технология пищевых производств / Под ред. А. П. Ковальской. – М.: Колос 1993–384 с.

2. Самсонова А. Н. Фруктовые и овощные соки

3. Технология консервированных плодов и овощей. А. Ф. Фан-Юнг, Б. Л. Флау менбаум, А. К. Изотов – М.: Пищевая пром-сть

4. Рогачёв В.И. Справочник технолога плодоовощного консервного производства.

Расчет коэффициентов регрессии, проверка их значимости и адекватности математического описания в данном случае производятся так же, как и при полном факторном эксперименте, например в виде уравнения регрессии:

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

Оцените статью
Правильное хранение продуктов и готовых блюд — самое важное для здоровья