Хранение воды м минерального источника

Всем привет, с Вами как всегда Ольга, возможно Вам будет необходима информация для хранения продуктов и различных вещей и расскажу Вам о Способ сохранения состава и свойств минеральных вод железистых типов после их добычи. Может быть какие-то детали могут отличаться, как это было именно с Вами. Внимание, всегда читайте инструкции тех вещей, что покупаете для уборки в доме или химии, которая помогает их хранить. Отвечаю на самые простые вопросы. Пишите свои вопросы/пожелания и секреты в комменты, совместными усилиями улучшим и дополним качество предоставляемого материала.

Изобретение относится к способам сохранения и стабилизации состава и свойств нестойких минеральных вод, а именно слабоминерализованных железистых вод, например таких типов, как «Марциальный» и «Полюстровский», а также к способам их промышленного розлива.

Известны различные способы стабилизации жидкостей.

Например, известна «Фармацевтическая композиция», патент РФ 2075310, МПК 6 А 61 К 9/08, 9/16, БИ 8, 1997 г. Фармацевтическая композиция содержит АСЕ-ингибитор и кислотный стабилизатор и отличается тем, что в качестве стабилизатора содержит донор НСI при массовом соотношении АСЕ-ингибитор: донор НС1 2,5:1-1:7.

Однако данный стабилизатор очевидно не может быть применен в отношении минеральной воды.

Известен способ получения высокочистой целебной питьевой воды «Божья роса», описанный в заявке на изобретение РФ 96106276/14, МПК 6 А 61 К 35/08, БИ 13, 1998 г. Способ включает последовательно стадии удаления нерастворенных механических примесей, удаления хлора, удаления металлов, умягчения, удаления органики, деминерализации, обеззараживания при помощи УФ-облучения, замораживания, оттаивания и сбора талой воды и отличается тем, что после стадии удаления нерастворенных механических примесей осуществляется стадия дегазации, а после деминерализации — стадия дистилляции, причем замораживание проводят в высокоскоростном режиме путем мелкодисперсного распыления воды над поверхностью жидкого кислорода.

Используете ли Вы просроченные продукты для приготовления еды в домашних условиях?
Да, главное обработать если это мясные или просроченный кефир на блины.
27%
Нет, это очень опасно и не полезно.
37.28%
Если продукты имеют грибок или плесень, то выкидываем, если просрочка пару дней используем в пищу, можно и без термической или иной обработки.
35.71%
Проголосовало: 1722

Данный способ хотя и позволяет получить высокочистую воду для профилактики и лечения нарушений гомеостаза, но лишает воду всех полезных минеральных включений и ослабляет ее терапевтическое действие.

Наиболее близким по совокупности существенных признаков является «Способ сохранения состава и свойств нестойких минеральных вод после их добычи», патент РФ 2 154 485, МПК 7 А 61 К 35/08, С 02 F 1/22, A 23 L 3/36, БИПМ 23, 2000 г.

Согласно этому патенту, способ включает забор нестойкой минеральной воды типа «Нафтуся» из источника, ее фильтрацию, порционирование, стабилизирующее воздействие и герметизацию порций минеральной воды, при этом в качестве стабилизирующего воздействия используют процесс замораживания минеральной воды, который завершают в течение 1 ч с момента забора ее из источника до температуры (-10)-(-12) o С со скоростью от 1 до 20 см/ч в проходной холодильной камере.

Данный способ имеет существенные недостатки: — стабилизация, основанная на принципе замораживания, не может быть применена к слабоминерализованным железистым водам таких типов как «Марциальный» и «Полюстровский», так как закисное железо Fe 2+ превращается при этом в окись железа Fe 3+ , т.е. в ржавчину, не имеющую лечебного воздействия; — процедура фильтрации удаляет из воды органику — основной лечебный элемент минеральной воды; — способ является достаточно дорогостоящим и длительным по времени.

Таким образом, описанный выше способ совершенно не пригоден для стабилизации слабоминерализованных железистых типов вод, так как лишает их основных лечебных свойств.

Целью настоящего изобретения является разработка такого способа стабилизации минеральных железистых вод, который сохранял бы их состав и все лечебные свойства, при этом он должен быть достаточно дешев и прост в реализации.

Как известно, такие воды как «Марциальная» и «Полюстровская» согласно ГОСТ 13273-88 «Воды минеральные питьевые лечебные и лечебно-столовые» относятся по типу к XXX группе: «Слабоминерализованные железистые минеральные воды» Существуют также другие типы железистых минеральных вод, указанных в ГОСТ 13273-88, например: группа III-a «Гидрокарбонатная магниево-кальциево-натриевая, железистая», типа «Турш-Су»; группа IV-a «Гидрокарбонатная магниево-кальциевая, железистая», тип «Дарасунский»; группа Х-а «Сульфатно-гидрокарбонатная магниево-кальциевая и натриево-магниево-кальциевая, железистая», тип «Аршанский»; группа XXIV-a «Хлоридно-гидрокарбонатная кальциево-натриевая, борная, железистая», тип «Малкинский».

Такие типы минеральных вод характеризуются тем, что основным лечебным компонентом в них является двухвалентное железо Fe 2+ , которое, соприкасаясь с кислородом воздуха в течение двух-трех часов, окисляется и преобразуется в трехвалентное железо Fe 3+ и выпадает в осадок. При этом вода теряет свои лечебные свойства. Это свойство воды много десятилетий препятствовало ее промышленному розливу.

Заявленное изобретение направлено на решение описанной выше проблемы.

Дополнительным отличием является то, что с аскорбиновую или лимонную кислоту вносят в минеральную воду из расчета одна часть кислоты к одной части железа. Такое соотношение является наилучшим для достижения установленного нормативами срока хранения готовых порций минеральной воды.

Такой способ разлива необходим для исключения соприкосновения воды с воздухом и предотвращения окисления железа, что является дополнительным стабилизующим фактором.

Предпочтительно в качестве тары для розлива воды использовать бутылки емкостью не более 0,5 л, выполненные из темного светозащитного материала.

В таблице 1 представлены характеристики двух типов минеральных вод, взятых для примера, а именно «Марциальный», «Полюстровский».

На практике способ осуществляют следующим образом, на примере типа воды»Марциальный» .

После забора воды из источника необходимо определить уровень содержания в ней двухвалентного железа для расчета количества стабилизирующих добавок.

При добавлении менее 0,3 части кислоты на 1 часть железа реакция стабилизации не происходит, такое количество добавок является недостаточным. Если добавить более 3,0 части кислоты на 1 часть железа, то такое количество кислоты влияет на химический состав воды, так как изменяет и даже ухудшает ее лечебные качества.

Кроме того, аскорбиновая и лимонная кислоты являются консервантами. Количество добавленной кислоты напрямую влияет на срок хранения готовых порций воды, который в зависимости от пропорций кислоты по отношению к железу колеблется от 1 до 12 месяцев.

Железистые минеральные воды широко применяются при некоторых заболеваниях крови, желудка, печени, почек, при болезни обмена веществ и сердечно-сосудистых заболеваниях.

Предложенный способ позволяет не только использовать минеральную воду по месту добычи, но и доставлять воду в другие регионы без утраты лечебных свойств.

2. Способ по п. 1, отличающийся тем, что аскорбиновую или лимонную кислоту вносят в минеральную воду из расчета одна часть кислоты к одной части железа.

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 25.07.2010

2. Способ по п. 1, отличающийся тем, что аскорбиновую или лимонную кислоту вносят в минеральную воду из расчета одна часть кислоты к одной части железа.

Обогащение воды магнием

Магний, являясь необходимым элементом полноценной питьевой воды, также практически полностью удаляется в процессе мембранной очистки. Поэтому обогащение воды магнием, наряду с кондиционированием по содержанию ионов кальция, необходимо осуществлять после мембранной фильтрации. Впрочем, дополнить этими незаменимыми для здоровья минералами необходимо и природную воду, обладающую слишком низкой жесткостью в силу природных особенностей источника воды.

Зачем обогащать воду минеральными добавками?

Повсеместное использование высокоэффективных очистных мембранных устройств имеет двойственное влияние на здоровье человека и качество воды. С одной стороны, вода очищается от патогенных микробов и других вредных примесей, а с другой – многие полезные вещества (минералы и микроэлементы) также удаляются. Чтобы исправить этот недостаток, выполняется минерализация воды после обратного осмоса. На принципе обратного осмоса работает множество бытовых и промышленных фильтров для воды.

В результате этого принудительного процесса вода под определенным заданным давлением проходит через слабопроницаемую мембрану и в результате лишается всех вредных примесей и большинства минеральных солей. Восполнить образовавшийся недостаток и помогает минерализатор воды после обратного осмоса. В частности, дозирующее устройство, впрыскивающее минеральную добавку в поток воды в определенной пропорции.

Обогащение воды кальцием

В результате промышленного опреснения воды получается практически дистиллированная вода, непригодная для потребления внутрь. Чтобы придать ей нужные потребительские свойства, происходит обогащение воды кальцием путем кондиционирования минеральными добавками на основе кальциевых солей.

Понятие общая минерализация питьевой воды определяет количественный состав растворенных в воде минеральных веществ. Арифметически этот показатель вычисляется как сумма всех катионов (положительно заряженных ионов) и анионов (отрицательно заряженных ионов) в воде.

Аналитически общую минерализацию обычно оценивают по величине сухого остатка, определяемого посредством упаривания и взвешивания (отметим, однако, что при использовании этого метода результат оказывается существенно заниженным по сравнению с фактическим значением общей минерализации – примерно на половину содержания гидрокарбонат-ионов в воде). Определяющий вклад в минерализацию воды вносят следующие ионы: кальций, магний, калий, натрий, хлорид-ионы, сульфат-ионы, гидрокарбонат-ионы.

Этот диапазон, в соответствии с современными представлениями, является оптимальным для воды, используемой для повседневного употребления и приготовления пищи и напитков.

Мембранные технологии систем очистки питьевой воды (обратный осмос) практически полностью удаляют из воды ионы, составляющие ее минерализацию. Для устранения этого побочного эффекта очистки воды методом обратного осмоса мы предлагаем использовать наши минеральные добавки для реминерализации очищенной воды – реминерализация воды

В результате промышленного опреснения воды получается практически дистиллированная вода, непригодная для потребления внутрь. Чтобы придать ей нужные потребительские свойства, происходит обогащение воды кальцием путем кондиционирования минеральными добавками на основе кальциевых солей.

Краткое описание

От одного поколения к другому поколению передавались устные сказания о чудодейственных свойствах воды из минеральных источников. Об этом говорят и названия многих из них. «Нарзан», точнее «нарт-санэ» — абазинское слово, которое означает в переводе «богатырский источник», или источник богатырского племени Нартов. В былинах и легендах, сложенных об источнике, говорится о том, что его вода возвращает здоровье, красоту и молодость. Воины, идущие в поход, пили воду источника, и она придавала им небывалую силу, выносливость и бодрость.
Кисловодская долина, где находится знаменитый источник минеральной воды «Нарзан», с давних пор привлекала внимание людей. Там, где из-под земли бьют природные минеральные источники, встречаются остатки древних бань.

Читайте также:  Сколько может хранится охлажденное филе иедейкив холодильнике

Файлы: 1 файл

Контрольная мин.воды,классификация,хранение, транспортировка.docx

Классификация лечебных минеральных вод…………………………………………………..7

Порядок хранения и транспортировки лечебных минеральных вод………………….….…10

Список используемой литературы…………………………………………………… ……….13

От одного поколения к другому поколению передавались устные сказания о чудодейственных свойствах воды из минеральных источников. Об этом говорят и названия многих из них. «Нарзан», точнее «нарт-санэ» — абазинское слово, которое означает в переводе «богатырский источник», или источник богатырского племени Нартов. В былинах и легендах, сложенных об источнике, говорится о том, что его вода возвращает здоровье, красоту и молодость. Воины, идущие в поход, пили воду источника, и она придавала им небывалую силу, выносливость и бодрость.
Кисловодская долина, где находится знаменитый источник минеральной воды «Нарзан», с давних пор привлекала внимание людей. Там, где из-под земли бьют природные минеральные источники, встречаются остатки древних бань. В этих банях не только купались, но и лечились минеральными водами. По свидетельству путешественников, побывавших в тех местах еще в начале XVIII в., у основного родника стоял столб и на нем висел серебряный ковш как символ глубокого почтения к чудесному источнику. На территории источника они обнаружили несколько высеченных из камня ванн, предназначенных для купания в нарзане. Это подтверждает тот факт, что местные жители с успехом использовали нарзан для лечения многих болезней еще задолго до прихода славянских народов. Ванны сохранились до наших дней. Сведения о целебных свойствах источника заинтересовали Государственную медицинскую коллегию, и она обратилась к государю с предложением считать район Кавказских Минеральных Вод лечебной местностью, имеющей государственное значение. Предложение Медицинской коллегии было принято, и в 1803 г. издан соответствующий указ.

При лечении заболеваний органов пищеварения наряду с диетическим питанием одно из центральных мест занимает прием внутрь минеральных вод — питьевое лечение. В настоящее время лечебными минеральными водами называются воды, которые в силу своих особых физико-химических свойств могут использоваться для лечения, реабилитации и профилактики различных заболеваний. Далеко не всякая минеральная вода может, быть признана лечебной и тем более пригодной для внутреннего употребления. Для питья с лечебной целью используются подземные минеральные воды, добытые из источников их естественного выхода или из скважин, полученных путем бурения на различную глубину.

Минеральная вода добыта из подземных источников природного происхождения. В зависимости от того, сколько минералов содержится в такой воде, она бывает лечебной, столовой или лечебно-столовой.

Природные минеральные воды в зависимости от их состава в лечебном назначении подразделяются на несколько бальнеологических групп. Очень важно ориентироваться в видах минеральных вод, чтобы не навредить организму.

Для того чтобы минеральная вода сохранила все свои полезные свойства, считается обязательным создать все необходимые условия ее хранения и транспортировки, которые закреплены нормативными документами.

Подземные воды формируются из атмосферных вод или за счет древних метаморфизированных морских вод, залегающих на различной глубине, чей возраст нередко составляет миллионы лет. Подземные минеральные воды приобретают свойственный им химический состав за счет выщелачивания разнообразных горных пород. Нередко минеральные воды глубинного происхождения на своем пути к поверхностным выходам смешиваются с атмосферными водами и образуют новые типы вод.

Состав минеральных вод обусловлен историей геологического развития, характером тектонических структур, литологии, геотермических условий и другими особенностями территории. Наиболее мощные факторы, обусловливающие формирование газового состава минеральных вод, — метаморфические и вулканические процессы. Выделяющиеся во время этих процессов летучие продукты (CO2, HCl и др.) поступают в подземные воды и придают им высокую агрессивность, способствующую выщелачиванию вмещающих пород и формированию химического состава, минерализации и газонасыщенности воды. Ионно-солевой состав минеральных вод формируется при участии процессов растворения соленосных и карбонатных отложений, катионного обмена.

Газы, растворённые в минеральных водах, служат показателями геохимических условий, в которых шло формирование данной минеральной воды. В верхней зоне земной коры, где преобладают окислительные процессы, минеральные воды содержат газы воздушного происхождения — азот, кислород, углекислоту (в незначительном объёме). Углеводородные газы и сероводород свидетельствуют о восстановительной химической обстановке, свойственной более глубоким недрам Земли; высокая концентрация углекислоты позволяет считать содержащую её воду сформировавшейся в условиях метаморфической обстановки.

На поверхности Земли минеральные воды проявляются в виде источников, а также выводятся из недр буровыми скважинами. Для практического освоения выявляются месторождения подземных минеральных вод со строго определёнными эксплуатационными возможностями.

Многолетние наблюдения за составом некоторых источников и величиной атмосферных осадков показали, что путь от формирования до выхода миморальной воды на поверхность порой занимает около года. Надо отметить, что места естественного выхода минеральных источников на поверхность иногда отстоят на десятки километров от мест их образования. По пути формирование минеральной воды продолжается: она обогащается новыми солями, теряет часть своих газов, снижается ее температура.

Классификация лечебных минеральных вод.

Минеральные воды оказывают на организм человека лечебное действие всем комплексом растворённых в них веществ, а наличие специфических биологически активных компонентов (CO2, H2S, As и др.) и особых свойств определяет часто методы их лечебного использования. В качестве основных критериев оценки лечебности минеральных вод в курортологии приняты особенности их химического состава и физических свойства, которые одновременно служат важнейшими показателями для их классификации.

Природные минеральные воды в зависимости от их состава в лечебном назначении подразделяются на следующие бальнеологические группы:

Далее воды по газовому составу делятся на три подгруппы: а) азотные, в которых газ имеет в основном атмосферное происхождение; б) метановые (включая азотно-метановые и углекисло-метановые), в которых газ в основном биохимического происхождения; в) углекислые, в которых газ, как правило, эндогенного происхождения. К последней группе отнесены и вулканические газы, где почти всегда резко преобладает углекислый газ.

В минеральных водах без специфических компонентов и свойств могут присутствовать азотные и метановые газы; в сероводородных и кремнистых водах- азотные, метановые и углекислые; в железистых и радоновых водах — азотные и углекислые; в бромистых водах — азотные и метановые; все воды 2 группы только углекислые.

Одновременно все минеральные воды разделены по составу и минерализации на 9 классов. При этом учитывались все ионы, содержащиеся в количествах не менее 20% экв. Первый класс объединяет в себе все воды с общей минерализацией до 2 г/л, независимо от их состава, так как при такой невысокой минерализации лечебное действие минеральной воды определяется не ионным составом, а наличием каких-либо фармакологически активных микрокомпонентов или специфических свойств. Во всех остальных классах число подклассов колеблется от 3 до 7.

Выделено несколько градаций минерализации: до 2, 2-5, 5-15, 15-35, 35-150 и выше 150 г/л. Такое подразделение, удобное в бальнеологическом и генетическом отношении показывает обычную наиболее часто встречающуюся в природе минерализацию типов минеральных вод.

Минеральные воды подразделяются на три группы по температуре:

всегда холодные, формирующиеся, как правило, на небольших глубинах;

холодные, теплые или горячие в зависимости от глубины циркуляции;

всегда горячие, генезис и особенности состава которых тесно связаны с их территориальностью. К последним относятся все термы, входящие в группы сероводородных и железистых вод.

По величине pH воды разделены на 6 групп:

1. Сильнокислая минеральная вода, где уровень рН 9,5.

Величина pH имеет особо важное значение для лечебной оценки сероводородных (сульфидных) вод, поскольку ею определяется соотношение в водах свободного H2S и HS — , а также кремнекислых терм, количество и форма нахождения в которых H2SiO3 зависит от щелочности или кислотности вод.

Эти классификации лечебных минеральных вод имеют частный характер и специальное назначение. Известны многочисленные попытки составить общие, естественноисторические, генетические и другие классификации природных вод по составу и минерализации.

Классификация лечебных минеральных вод…………………………………………………..7

Статья обзорная. Цель статьи ознакомить читателей.

Уровень содержания солей в питьевой воде разный в разных геологических регионах (вследствие различной растворимости минералов).

Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.

Большинство рек имеет минерализацию от 10 до 100 мг/дм3

Минерализация подземных вод и солёных озёр изменяется в интервале от 40-50 мг/дм3

Минерализация атмосферных осадков в интервале от 3 до 60 мг/дм3

Многие производства, сельское хозяйство, предприятия питьевого водоснабжения предъявляют определённые требования к качеству вод, в частности, к минерализации, так как воды, содержащие большое количество солей, отрицательно влияют на растительные и животные организмы, технологию производства и качество продукции, вызывают образование накипи на стенках котлов, коррозию, засоление почв.

В зависимости от минерализации природные воды можно разделить на следующие категории:

Ультрапресная вода – это обычно вода ручьёв, текущих от тающих ледников, а так же воды рек, протекающих среди дождевого экваториального леса. Большинство рек и озёр на нашей Планете являются пресными. Вода поверхностных водоёмов в пустынных и засушливых областях обычно солоновата, либо имеет повышенную минерализацию.

Морская вода относится к водам повышенной солёности. Океанская вода содержит около 35% различных солей, но преимущественно хлористого натрия (NaCl). Внутренние моря обычно имеют меньшую минерализацию за счёт опреснения их речной водой.

Воды, представляющие собой рассолы, в основном находятся глубоко под землей, но бывают и очень соленые озера (Мертвое море).

Уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л. При величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ (Всемирная Организация Здравоохранения) рекомендован верхний предел минерализации воды в 1000 мг/л.

Классификация вод по минерализации с точки зрения медицины.

В зависимости от степени минерализации минеральные воды, используемые для питьевого лечения, подразделяют на:

Читайте также:  Через сколько дней гриб становится червивым

столовые – минерализация до 1 г/л;

лечебно-столовые – минерализация от 1 до 10 г/л;

К группе столовых вод относятся воды, минерализация которых составляет менее 1 г/литр.

Эти воды считаются безопасными для употребления. Столовая минеральная вода стимулирует пищеварение и не имеет лечебных свойств. Ее можно пить в любых количествах. Как правило, она мягкая, приятная на вкус, без постороннего запаха и привкуса, на ее основе изготовляются многие прохладительные напитки.

На столовой воде нельзя готовить еду. При кипячении минеральные соли выпадают в осадок или образуют соединения, которые не усваиваются организмом.

К группе лечебно-столовых вод относятся воды с общим уровнем минерализации 1-10 г/литр.

Это наиболее распространённый тип минеральной воды. Лечебные свойства таких вод проявляются только при их правильном использовании. Лечебно-столовую минеральную воду пьют как для профилактики, так и в качестве столовой. Эта группа вод обладает ярко выраженным лечебным эффектом только при правильном применении. При употреблении ее в неограниченном количестве может нарушиться солевой баланс в организме. Самолечение с помощью такой воды может привести к значительному нарушению солевого баланса в организме, а также к резкому обострению имеющихся хронических заболеваний.

Лечебные минеральные воды имеют уровень общей минерализации более 10 г/литр.

Лечебные минеральные воды применяются для питьевого лечения и для наружного применения – ванн, душа, купаний, а также для ингаляций. Эффект от ее применения зависит от правильного выбора типа воды и от правильного приёма – дозы, периодичности, температуры, пищевого режима. Поэтому проводить лечение минеральной водой нужно обязательно под наблюдением врача.

Классификация минеральных вод по химическому составу:

гидрокарбонатные; хлоридные; сульфатные; натриевые; кальциевые; магниевые; смешанные.

Гидрокарбонатная минеральная вода

Гидрокарбонатная минеральная вода — содержит гидрокарбонаты (минеральные соли), более 600 мг на литр. Она снижает кислотность желудочного сока. Часто используется как средство от изжоги. Применяется при лечении мочекаменной болезни. Рекомендуется людям, активно занимающимся спортом, грудным детям и больным циститом.

Хлоридная минеральная вода

Хлоридная минеральная вода содержит более 200 мг хлоридов на литр. Она стимулирует обменные процессы в организме, улучшает секрецию желудка, поджелудочной железы, тонкого кишечника. Применяется при расстройствах пищеварительной системы. Противопоказана при повышенном давлении.

Сульфатная минеральная вода

Сульфатная минеральная вода — содержит более 200 мг сульфатов на литр. Она стимулирует перистальтику желудочно-кишечного тракта и благоприятно влияет на восстановление функции печени и желчного пузыря. Оказывает мягкий слабительный эффект, выводит из организма вредные вещества и примеси. Применяется при болезнях желчных путей, хроническом гепатите, сахарном диабете, ожирении. Сульфатную воду не рекомендуют пить детям и подросткам: сульфаты могут препятствовать усвоению кальция.

Натриевые, кальциевые и магниевые минеральные воды

Натриевые, кальциевые и магниевые минеральные воды – воды с преобладанием соответственно катионов Na+, Сa2+ и Mg 2+.

Большинство минеральных вод имеет сложную смешанную структуру: хлоридно-сульфатные, гидрокарбонатно-сульфатные и т. д. Это повышает их лечебный эффект.

Классификация минеральных вод в зависимости от газового состава и наличия специфических элементов:

углекислые (кислые); сульфидные (сероводородные); бромистые; йодистые; мышьяковистые;

железистые; кремниевые; радиоактивные (радоновые)

Классификация минеральных вод в зависимости от кислотности:

нейтральные рН 6,8—7,2; слабокислые рН 5,5—6,8; кислые 3,5—5,5; сильнокислые 3,5 и менее;

слабощелочные 7,2—8,5; щелочные 8,5 и более.

Классификация воды по качеству (происхождению) минералов.

минералы неорганического происхождения; минералы органического происхождения.

Часто в рекламе нам предлагают воду, которая наполнена «минералами, так необходимыми для жизни каждого человека». Это излюбленный рекламный приём производителей и реализаторов минерализованных вод.

Статья обзорная. Цель статьи ознакомить читателей.

Миф о вреде жёсткой воды и пользе обратноосмотической

В стародавние времена, 4.1-3.8 млрд лет назад, на третьей от Солнца планете начался абиогенез. Жизнь потихоньку зарождалась в первичном бульоне, щурясь на яркий солнечный свет своими маленькими зелёными глазками. Эволюционно развиваясь, жизнь приспосабливалась к окружающей среде, подстраивалась под неё. Шли годы, и 300 тыс лет назад появились первые Homo sapiens. Они продолжили лучшие эволюционные традиции предыдущих эпох, и надо заметить, что во всём вмещающем ландшафте ни тогда, ни сейчас нигде не было деминерализованной воды. Ну, кроме снега в Заполярье. Но там человек не жил. И лишь каких-то 50 лет назад появились первые технологии глубокой очистки питьевой воды. Такой срок по меркам эволюционного развития — лишь артефакт в рамках статистической погрешности. Может, их и не было, этих пятидесяти лет. А с первичным бульоном — насыщенным минеральным раствором — жизнь знакома всю свою жизнь.

С тех пор прошло несколько десятков лет, и опреснительные установки активно вошли в быт, особенно в странах Азии и Ближнего Востока. В промышленных масштабах опреснённые воды, как правило, подвергаются искусственной минерализации карбонатом кальция или путём добавления небольшого количества исходной солёной воды. Но делается это, в основном, для защиты водопроводных труб от выщелачивания, и во вторую очередь — для вкуса. Как следствие, люди, потребляющие такую воду (в том числе и бутилированную), могут недополучать некоторые важные химические элементы, присутствующие в более минерализованной воде.

В 1963 году Williams в своей работе утверждал, что дистиллированная вода, вводимая в кишечник, вызывает аномальные изменения в эпителиальных клетках крыс, возможно, из-за осмотического шока. Однако, эти выводы не были подтверждены Schumann et al. в более поздних 14-дневных экспериментах на крысах. Гистологический анализ не выявил признаков эрозии, изъязвления или воспаления в пищеводе, желудке и тощей кишке. В отчёте, подготовленном для ВОЗ группой Ю. А. Рахманина в 1980 году, отмечалось лишь увеличение секреции и кислотности желудочного сока и изменение тонуса желудочной мышцы у крыс, которым давалась дистиллированная вода. Но имеющиеся в настоящее время данные недвусмысленно указывают на прямое негативное воздействие деминерализованной воды на слизистую оболочку ЖКТ.

Результаты экспериментов на добровольцах из числа людей согласуются с результатами экспериментов на животных. Низкоминерализованная вода (менее 100 мг/л), потребляемая добровольцами, приводила к:

а. усилению диуреза (в среднем почти на 20%) и увеличению объема внеклеточной жидкости в организме;
б. увеличению концентрации натрия в сыворотке крови;
в. снижению концентрации калия в сыворотке;
г. увеличению выделения натрия, калия, хлорид-аниона, кальция и магния из организма.

Считается, что низкоминерализованная вода действует на осморецепторы желудочно-кишечного тракта, вызывая увеличение потока ионов натрия в просвет кишечника и небольшое снижение осмотического давления в портальной венозной системе с последующим усиленным высвобождением натрия в кровь в качестве адаптационного ответа. Это осмотическое изменение в плазме крови приводит к перераспределению воды в организме: увеличивается общий объем внеклеточной жидкости и перенос воды из эритроцитов в плазму. В ответ на измененный объем плазмы активируются барорецепторы и объемные рецепторы в кровотоке, что приводит к уменьшению выделения альдостерона и, следовательно, к увеличению элиминации натрия. Реакционная способность объемных рецепторов в сосудах может привести к уменьшению высвобождения вазопрессина (антидиуретический гормон) и усилению диуреза.

Вода в организме человека всегда содержит электролиты (например, калий и натрий) в определенных концентрациях, контролируемых организмом. Резорбция (всасывание) воды эпителием кишечника обеспечивается активным транспортом (натриево-калиевым насосом). Если потребляется дистиллированная вода, кишечник должен сначала добавить электролиты в эту воду, взяв их из резервов организма. Поскольку организм никогда не удаляет жидкость в виде «чистой» воды (а только всегда вместе с солями), необходимо обеспечить достаточное потребление электролитов. Употребление дистиллированной воды приводит к разбавлению электролитов, содержащихся в жидкостях организма. Неадекватное перераспределение воды в организме может нарушить функции жизненно важных органов. Симптомами такого состояния на начальном этапе являются усталость, слабость и головная боль; в более серьезных случаях появляются мышечные судороги и нарушение сердечного ритма.

Дополнительные доказательства получены в экспериментах на животных и клинических наблюдениях в нескольких странах. У лабораторных животных, которым давали воду с добавкой солей цинка и магния, обнаруживалась более высокая концентрация этих элементов в сыворотке, чем у животных, которым давали эти же соединения в больших дозах с пищей, но поили низкоминерализованной водой. Robbins и Sly пришли к выводу, что деминерализованная вода приводит к существенному вымыванию микро- и макроэлементов из организма.

Регулярное употребление низкоминерализованной воды на протяжении многих лет может не демонстрировать описанных выше симптомов. Но враг не дремлет! Такие милые состояния, как гипонатриемический шок, могут возникать после интенсивных физических нагрузок у людей, постоянно пьющих обессоленную воду. Так называемая «интоксикация водой» (гипонатриемический шок) также может возникать при однократном избыточном употреблении не только деминерализованной, но и водопроводной воды. Показано, что летальная доза воды (ЛД50) составляет 90 мл/кг (крысы, орально) [2]. Человеку массой 70 кг нужно выпить всего-то 6.3 л воды в короткий промежуток времени, чтобы вызвать серьёзные сбои в работе организма. При этом, «интоксикационный» риск увеличивается с уменьшением общего солесодержания. В прошлом острые проблемы со здоровьем отмечались у альпинистов, которые готовили чай и пищу на талом снегу. Более тяжелый вариант такого состояния в сочетании с отёком мозга, судорогами и метаболическим ацидозом отмечался у младенцев, чья еда и напитки были приготовлены с использованием низкоминерализованной или деминерализованной бутилированной воды.

2. Риск возникновения дефицита кальция и магния при употреблении умягчённой или низкоминерализованной воды.

Кальций и магний играют важную роль в организме. Кальций входит в состав костей и зубов, регулирует нервно-мышечную возбудимость (уменьшает её), отвечает за функционирование проводящей системы сердца, сократимость сердца и мышц, передачу внутриклеточной информации и свёртываемость крови. Магний выступает в качестве кофактора и активатора более 300 ферментативных реакций, включая гликолиз, метаболизм АТФ, перенос натрия, калия и кальция через мембраны, синтез белков и нуклеиновых кислот; регулирует нервно-мышечную возбудимость и сокращение мышц.

Несмотря на то, что вода не является основным источником кальция и магния, отсутствие этих элементов в питьевой воде приводит к повышенному их вымыванию из организма и не компенсируется поступлением с пищей.

Наиболее ценные сведения о влиянии низких концентраций кальция в питьевой воде на целую популяцию людей были получены в исследованиях, проведенных в советском городе Шевченко (ныне Актау, Казахстан), где в системе городского водоснабжения применялись опреснительные установки (источник воды — Каспийское море). У местного населения отмечались снижение активности щелочной фосфатазы, снижение концентрации кальция и фосфора в плазме и усиление декальцификации костной ткани. Эти изменения были наиболее заметны у женщин, особенно беременных, и зависели от продолжительности проживания в Шевченко. Необходимость наличия кальция в питьевой воде также подтверждается в однолетнем эксперименте на крысах, которых обеспечили полностью адекватной диетой с точки зрения питательных веществ и солей, но поили дистиллированной водой, в которую добавляли 400 мг/л не содержащих кальция солей и одну из этих концентраций кальция: 5 мг/л, 25 мг/л или 50 мг/л. У крыс, получавших воду с 5 мг/л кальция, было обнаружено снижение функциональности гормонов щитовидной железы и других связанных функций по сравнению с остальными участвовавшими в эксперименте зверьками.

Читайте также:  Что делать чтобы шампиньоны не темнели

Считается, что общее изменение состава питьевой воды сказывается на здоровье человека через много лет, а понижение концентрации кальция и магния в питьевой воде отражается на самочувствии практически мгновенно. Так, жители Чехии и Словакии в 2000-2002 годах начали активно использовать системы обратного осмоса в своих квартирах для доочистки городской воды. В течение нескольких недель или месяцев на местных врачей нахлынул поток пациентов с жалобами, указывающими на острый дефицит магния (и, возможно, кальция): сердечно-сосудистые расстройства, усталость, слабость и мышечные судороги.

3. Риск возникновения дефицита жизненно важных веществ и микроэлементов при употреблении низкоминерализованной воды.

Недавние эпидемиологические исследования в России, проводившиеся среди групп населения, проживающих в районах с различающейся по солесодержанию водой, свидетельствуют о том, что низкоминерализованная питьевая вода может приводить к гипертонии и ишемической болезни сердца, язве желудка и двенадцатиперстной кишки, хроническому гастриту, зобу, осложнениям беременности и ряду осложнений у новорожденных и младенцев, включая желтуху, анемию, переломы и нарушения роста. Впрочем, исследователи отмечают, что для них осталось непонятным, оказывает ли такое влияние на здоровье именно питьевая вода, или же всё дело в общей экологической обстановке в стране.

4. Вымывание полезных веществ из пищи, приготавливаемой на низкоминерализованной воде.

Было установлено, что при использовании для приготовления пищи умягчённой воды происходит значительная потеря продуктами питания (мясо, овощи, крупы) микро- и макроэлементов. Из продуктов вымывается до 60% магния и кальция, 66% меди, 70% марганца, 86% кобальта. С другой стороны, когда для приготовления пищи используется жёсткая вода, потери этих элементов снижаются.

Поскольку большинство питательных веществ поступает в организм с пищей, использование низкоминерализованной воды для приготовления пищи и переработки пищевых продуктов может привести к заметному дефициту некоторых важных микро- и макроэлементов. Нынешнее меню большинства людей обычно не содержит всех необходимых элементов в достаточных количествах, и поэтому любой фактор, который приводит к потере основных минеральных и питательных веществ в процессе приготовления пищи, дополнительно усугубляет ситуацию.

5. Возможное увеличение поступления в организм токсичных веществ.

Низкоминерализованная, а особенно деминерализованная вода чрезвычайно агрессивна и способна выщелачивать тяжёлые металлы и некоторые органические вещества из материалов, с которыми контактирует (трубы, фитинги, ёмкости для хранения). Кроме того, кальций и магний, содержащиеся в воде, обладают в какой-то мере антитоксическим действием. Их отсутствие в питьевой воде, которая ещё и по медным трубам попала в вашу оловянную кружку, запросто приведёт к отравлению тяжёлыми металлами.

Среди восьми случаев интоксикации питьевой водой, зарегистрированных в США в 1993-1994 годах, было три случая отравления свинцом у младенцев, в крови которых обнаружились превышения свинца в 1.5, 3.7 и 4.2 раза соответственно. Во всех трёх случаях свинец выщелачивался из пропаянных свинцовым припоем швов в резервуарах для хранения питьевой обратноосмотической воды, на которой разводили детское питание.

Известно, что кальций и, в меньшей степени, магний обладают антитоксической активностью. Они предотвращают абсорбцию в кровь из кишечника ионов тяжёлых металлов, таких как свинец и кадмий, путём конкуренции за сайты связывания. Хотя этот защитный эффект ограничен, его нельзя отбрасывать. В то же время, другие токсичные вещества могут вступать в химическую реакцию с ионами кальция, образуя нерастворимые соединения и, таким образом, теряя своё токсическое действие. Население в районах, снабжаемых низкоминерализованной водой, может подвергаться повышенному риску отравления токсическими веществами по сравнению с населением в регионах, где применяется обычная жёсткая вода.

6. Возможное бактериальное загрязнение низкоминерализованной воды.

Этот пункт в оригинальной статье немножко притянут за уши, но всё же. Любая вода подвержена бактериальному загрязнению, именно поэтому в трубопроводах держат минимальную остаточную концентрацию дезинфектантов — например, хлора. Известно, что обратноосмотические мембраны способны удалять из воды практически все известные бактерии. Тем не менее, обратноосмотическую воду тоже необходимо дезинфецировать и держать в ней остаточную концентрацию дезинфецирующего вещества, чтобы избежать вторичного заражения. Показателен пример вспышки брюшного тифа, вызванной водой, обработанной обратным осмосом, в Саудовской Аравии в 1992 году. Там решили отказаться от хлорирования обратноосмотической воды, ведь она, по идее, была заведомо стерилизована обратным осмосом. Чешский национальный институт общественного здравоохранения в Праге испытал продукты, предназначенные для контакта с питьевой водой, и обнаружил, например, что напорные ёмкости бытовых установок обратного осмоса подвержены бактериальному разрастанию.

Влияние жёсткой воды на образование камней в почках

Содержащиеся в моче растворённые вещества при некоторых определённых условиях могут кристаллизоваться и откладываться на стенках почечных чашек и лоханки, в мочевом пузыре, а также других органах мочевыделительной системы.

Влияние жёсткости воды на образование мочевых конкрементов трудно определить. В большинстве исследований, оценивающих влияние жёсткости воды на появление и развитие мочекаменной болезни (уролитиаз), используются данные медицинских стационарных учреждений. В этом смысле исследование, проведённое Schwartz et al. [3], значительно отличается тем, что все данные были собраны в амбулаторных условиях, при этом пациенты оставались в естественной среде и занимались своими обычными делами. В этой работе представлена самая большая когорта пациентов на сегодняшний день, что позволяет оценить влияние жёсткости воды на различные компоненты мочи.

Учёные обработали обширный материал. Агенство по охране окружающей среды США (EPA) предоставило информацию о химическом составе питьевых вод на территории США с географической привязкой. Эти сведения объединялись с национальной базой данных амбулаторных лиц, страдающих мочекаменной болезнью (там содержится почтовый индекс пациента, поэтому географическая привязка оказалась возможной). Таким образом были идентифицированы 3270 амбулаторных пациента с кальциевыми конкрементами.

Несмотря на эти распространенные опасения по поводу жёсткости воды, никакие исследования не подтверждают предположение, что употребление жёсткой воды увеличивает риск образования мочевых конкрементов.

Sierakowski et al. изучили 2302 медицинских заключения из стационарных больниц, разбросанных по всей территории США, и обнаружили, что у пациентов, которые жили в районах, снабжаемых жёсткой водой, риск возникновения мочекаменной болезни был ниже. Аналогичным образом, в цитируемой работе [3] было установлено, что жёсткость питьевой воды обратно пропорциональна заболеваемости мочекаменной болезнью.

В приводимом исследовании количество эпизодов мочекаменной болезни было несколько выше у пациентов, проживающих в районах с более мягкой водой, что согласуется с данными других авторов, но противоречит общественному восприятию. Известно, что в некоторых случаях, например, у лиц, страдающих гиперкальциурией, повышенное пероральное потребление кальция может усугубить образование мочевых камней. У пациентов с гипероксалурическим кальциевым нефролитиазом повышенное пероральное введение кальция, наоборот, способно успешно ингибировать образование камней путём связывания солей щавелевой кислоты кальцием в кишечнике и, таким образом, ограничивая поступление оксалатов в мочевыделительную систему. Поступление кальция с питьевой водой потенциально может оказывать ингибирующее действие на образование кальциевых мочевых конкрементов у одних пациентов и способствовать образованию камней у других. Эта теория была проверена в работе Curhan et al., в ходе которой оценивалось влияние потребления кальция у 505 пациентов с повторным камнеобразованием. После 4 лет наблюдения в группе пациентов, принимавших кальций, отмечалось наименьшее число эпизодов появления мочевых камней. Исследователи пришли к выводу, что высокое потребление кальция с пищей снижает риск симптоматической мочекаменной болезни.

Несмотря на озабоченность населения потенциальным литогенезом жёсткой водопроводной воды, существующие научные данные свидетельствуют о том, что между жёсткостью воды и распространённостью образования камней в моче не существует никакой связи. Похоже, что существует корреляция между жёсткостью воды и уровнем кальция, цитрата и магния в моче, но значение этого неизвестно.

Кстати, автор приводит интересное сопоставление: потребление одного стакана молока может быть эквивалентно двум литрам водопроводной воды по содержанию кальция. Так, согласно данным Министерства сельского хозяйства США (USDA), 100 г молока содержит 125 мг кальция [4]. То же самое количество воды из городского водопровода содержит лишь около 4-10 мг кальция.

Сделать ее заметнее в лентах пользователей или получить ПРОМО-позицию, чтобы вашу статью прочитали тысячи человек.

  • Стандартное промо
  • 3 000 промо-показов 49
  • 5 000 промо-показов 65
  • 30 000 промо-показов 299
  • Выделить фоном 49

Статистика по промо-позициям отражена в платежах.

Поделитесь вашей статьей с друзьями через социальные сети.

Ой, простите, но у вас недостаточно континентальных рублей для продвижения записи.

Получите континентальные рубли,
пригласив своих друзей на Конт.

В наше время наблюдается бум чистой воды. Многие жители городов, получающие, казалось бы, качественную воду из городского водопровода, стремятся установить у себя дома дополнительные системы очистки воды — чаще всего, обратный осмос. При этом, типичны такие рассуждения: «жёсткая вода способствует образованию камней в почках, вызывает артроз, отложение солей и накипь в чайнике, поэтому в повседневной жизни нужно использовать исключительно обессоленную воду, в идеале — дистиллят». Однако, в научном сообществе до сих пор нет чёткого ответа на вопрос, связано ли употребление жёсткой воды с возникновением мочекаменной болезни. Напротив, влияние деминерализованной воды на организм человека изучено достаточно хорошо, и в научной среде на этот счёт сформировано однозначное, консолидированное мнение.

4. Вымывание полезных веществ из пищи, приготавливаемой на низкоминерализованной воде.

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

Оцените статью
Правильное хранение продуктов и готовых блюд — самое важное для здоровья